
Just Don't Do It

Sins of omission and commission

Jonathan Lewis

jonathanlewis.wordpress.com

www.jlcomp.demon.co.uk

JDDI

Page 2 of 40

Jonathan Lewis

© 2015 - 2106

Independent Consultant

33+ years in IT

28+ using Oracle (5.1a on MSDOS 3.3)

Strategy, Design, Review,

Briefings, Educational,

Trouble-shooting

Oracle author of the year 2006

Select Editor’s choice 2007

UKOUG Inspiring Presenter 2011

ODTUG 2012 Best Presenter (d/b)

UKOUG Inspiring Presenter 2012

UKOUG Lifetime Award (IPA) 2013

Member of the Oak Table Network

Oracle ACE Director

O1 visa for USA

My History

JDDI

Page 3 of 40

Jonathan Lewis

© 2015 - 2106

How to spend less time on a job

• Don't do it

• Do it less often

• Do it more efficiently

JDDI

Page 4 of 40

Jonathan Lewis

© 2015 - 2106

How lazy is Oracle

• Storage Indexes

• Zone Maps

The optimizer and run-time engine have many mechanisms for reducing work, or

avoiding repeating work they have done once. We can learn from these principles.

• Scalar Subquery Caching

• Deterministic Functions

• Partition Elimination

• Join Elimination

JDDI

Page 5 of 40

Jonathan Lewis

© 2015 - 2106

Superfluous Updates (a)

CPU Elapsd

Physical Reads Executions Reads per Exec %Total Time (s) Time (s) Hash Value

--------------- ------------ -------------- ------ -------- --------- ----------

2,951,745 1 2,951,745.0 13.3 750.49 1306.68 3185433958

Module: JDBC Thin Client

update HISTORY SET STATE = 0 WHERE FLAG = 'x'

update history set state = 0

where flag = 'x'

and state != 0;

Updates a few hundred rows instead of 5 million.

This halved the elapsed time - but still did a very big tablescan

This was from a statspack report taken from an overnight batch job. Step 1 - don't

update data that isn't going to change (unless you really want to lock it anyway).

http://jonathanlewis.wordpress.com/statspack-distractions/

JDDI

Page 6 of 40

Jonathan Lewis

© 2015 - 2106

Superfluous Updates (b)

create index hst_idx on history(

case when flag = 'x' and state != 0 then 1 end

);

Step 2: there's always some risk of side effects when adding indexes. New versions

of Oracle collect index stats automatically, but you still need to gather column stats.

begin

dbms_stats.gather_table_stats(

user, 'history',

method_opt=>

'for all hidden columns size 1'

-- 'for columns sys_nc00019$ size 1'

-- 'for columns (case when flag = 'x' and state != 0 then 1 end) size 1'

);

end;

/

JDDI

Page 7 of 40

Jonathan Lewis

© 2015 - 2106

Superfluous Updates (c)

select state, flag

from history

where case when flag = 'x' and state != 0 then 1 end = 1

;

| Id | Operation | Name | Rows | Bytes | Cost |

| 0 | SELECT STATEMENT | | 28 | 196 | 5 |

| 1 | TABLE ACCESS BY INDEX ROWID| HISTORY | 28 | 196 | 5 |

|* 2 | INDEX RANGE SCAN | HST_IDX | 28 | | 1 |

In 11g you're more likely to create a virtual column on the table then create an index on

the virtual column. In 12c you can even declare the column invisible.

Predicate Information (identified by operation id):

2 - access(CASE WHEN ("FLAG"='x' AND "STATE"<>0) THEN 1 END =1)

alter table t1 add x_status /* invisible */

generated always as (

case when flag = 'x' and state != 0 then 1 end

) virtual

;

JDDI

Page 8 of 40

Jonathan Lewis

© 2015 - 2106

Array Fetching (a)

This query takes 28 seconds to run - how can I make it go faster ?

select /*+ full(my_big_table) */

max (id) id

from

my_big_table

group by

other_id, event, company_id, security_id;

| Id | Operation | Name | Rows | Bytes |TempSpc|

| 0 | SELECT STATEMENT | | 7951K| 257M| |

| 1 | SORT GROUP BY | | 7951K| 257M| 365M|

| 2 | PARTITION RANGE ALL| | 7951K| 257M| |

| 3 | TABLE ACCESS FULL | MY_BIG_TABLE | 7951K| 257M| |

That's not bad for scanning and aggregating (at least) 257MB / 8 million rows of data.

A covering index with an index fast full scan was "a little" faster.

A full scan might avoid the sort - if it was possible (nulls and partitions make this harder)

The covering index was about half the size of the table. It's an expensive strategy

with massive potential for unexpected side effects, and only 8 seconds saving.

JDDI

Page 9 of 40

Jonathan Lewis

© 2015 - 2106

Array Fetching (b)

set autotrace on statistics

Step one - work out where the time is going. In this case autotrace was sufficient to

show small array fetches. (Why does someone want 1.6M "raw" rows anyway?)

set arraysize 1000 -- Path with index fast full scan dropped to 4 seconds

set JDBC connection property “defaultRowPrefetch” (default 10)

… etc.

Statistics

91 recursive calls

10 db block gets

224115 consistent gets

10578 physical reads

0 redo size

25944773 bytes sent via SQL*Net to client

1200334 bytes received via SQL*Net from client

109080 SQL*Net roundtrips to/from client

0 sorts (memory)

1 sorts (disk)

1636183 rows processed

JDDI

Page 10 of 40

Jonathan Lewis

© 2015 - 2106

Addressing the problem (a)

I can view a blog page if

– it belongs to a friend

– or it belongs to a friend of a friend

There is a friendship table

– (my_id, friend_id, ...) -- this is the PK

– If A is a friend of B, then B is a friend of A (by trigger)

I acquire ids by knowing names

– so I have my id, and the blog owner’s id

JDDI

Page 11 of 40

Jonathan Lewis

© 2015 - 2106

Addressing the problem (b)

select

count(*)

from

friends fr

where

fr.my_id = :b1

and fr.friend_id = :b2

;

Strategy 1: check if it’s my friend, then a friend’s friend

select

count(*)

from

friends fr1,

friends fr2

where

fr1.my_id = :b1

and fr2.my_id = fr1.friend_id

and fr2.friend_id = :b2

;

The first statement checks if the two ids correspond to friends. If the count is zero the

sql statement checks for "friend of a friend" - with a little PL/SQL for control.

JDDI

Page 12 of 40

Jonathan Lewis

© 2015 - 2106

Addressing the problem (c)

select count(*) from (

select fr.friend_id

from friends fr

where

fr.my_id = :b1

and fr.friend_id = :b2

union all

select fr2.friend_id

from friends fr1,

friends fr2

where

fr1.my_id = :b1

and fr2.my_id = fr1.friend_id

and fr2.friend_id = :b2

)

;

Strategy 2: - "don't do it in PL/SQL if it can be done in SQL" (wrong solution)

The routine was too expensive, and the first attempt to improve performance used a

mantra to fix the wrong problem. This made things worse.

JDDI

Page 13 of 40

Jonathan Lewis

© 2015 - 2106

select count(*)

from (

select fr.friend_id

from friends fr

where fr.my_id = :b1

and fr.friend_id = :b2

union all

(-- brackets for clarity

select fr.friend_id

from friends fr

where fr.my_id = :b1

intersect

select fr.friend_id

from friends fr

where fr.my_id = :b2

) -- brackets for clarity

)

;

Addressing the problem (d)

Strategy 3: the join is unnecessarily expensive – so ask a different question

We change the English language from "are you a friend of a friend" - which suggests

a join - to "do we have a friend in common" - which suggests an intersection.

JDDI

Page 14 of 40

Jonathan Lewis

© 2015 - 2106

Addressing the problem (e)

IntersectJoin

Rowids checked: n + nn * n

Graphically we can see that we have changed an "n-squared" (clearly non-scalable)

problem into a "2n" (which means reasonably scaling) problem.

JDDI

Page 15 of 40

Jonathan Lewis

© 2015 - 2106

Addressing the problem (f)

select /*+ gather_plan_statistics */

count(*) from dual

where exists (

select fr.friend_id

from friends fr

where fr.my_id = :b1

and fr.friend_id = :b2

union all

(

select fr.friend_id

from friends fr

where fr.y_id = :b1

intersect

select fr.friend_id

from friends fr

where fr.my_id = :b2

)

)

;

In fact we shouldn't count, we can make things a little more efficient with a subquery

that checks for existence - which means it can stop after the first subquery.

JDDI

Page 16 of 40

Jonathan Lewis

© 2015 - 2106

"Never do in PL/SQL …"
declare

cursor c1 is select * from t2;

type c1_array is table of c1%rowtype index by binary_integer;

m_tab c1_array;

begin

open c1;

loop

fetch c1 bulk collect into m_tab limit 100;

begin

forall i in 1..m_tab.count -- save exceptions

insert into t1 values m_tab(i);

exception

when others then -- exception handling code

end;

exit when c1%notfound;

end loop;

close c1;

end;

Q: Why do this instead of a simple "insert into t1 select * from t2" ? A: It's an

efficient way to handle the occasional error without producing a massive rollback..

JDDI

Page 17 of 40

Jonathan Lewis

© 2015 - 2106

Cartesian Puzzle (a)

Target: We have a "big table" with many "attribute" columns,

We have a small "types" table with matching attribute columns

For each row in the big_table find the best possible match from types table.

All the attribute columns in big_table are mandatory

At least one attribute in each row of the types table will be non-null.

There is always at least one partial match.

select

bt.id, bt.v1,

ty.category,

ty.relevance

from

big_table bt, -- 500,000 rows

types ty -- 900 rows

where

nvl(ty.att1(+), bt.att1) = bt.att1

and nvl(ty.att2(+), bt.att2) = bt.att2

and nvl(ty.att3(+), bt.att3) = bt.att3

and nvl(ty.att4(+), bt.att4) = bt.att4

;

The code means we have to compare every row in the big table with every row in the

small table - for a total of 450 million intermediate rows "generated")

JDDI

Page 18 of 40

Jonathan Lewis

© 2015 - 2106

Sample data

Big_table

ATT1 ATT2 ATT3 ATT4 ID

1 1 2 1 1

1 3 1 4 2

Results

1 1 2 1 1

1 XX 10

1 1 YY 20

1 3 1 4 2

1 XX 10

1 1 ZZ 20

big_table id = 1 fails to match the 3rd row of types because of the mismatch in att3.

big_table id = 2 fails to match the 2nd row of types because of the mismatch in att4.

Types

ATT1 ATT2 ATT3 ATT4 CATEGORY RELEVANCE

1 XX 10

1 1 YY 20

1 1 ZZ 20

JDDI

Page 19 of 40

Jonathan Lewis

© 2015 - 2106

Cartesian Puzzle (b)

with distinct_data as (

select /*+ materialize */

distinct att1, att2, att3, att4 -- 400 rows

from big_table

)

select bt.id, bt.v1, ty.category, ty.relevance

from

distinct_data dd, types ty, big_table bt

where

nvl(ty.att1(+), dd.att1) = dd.att1 -- "expensive" but small

and nvl(ty.att2(+), dd.att2) = dd.att2

and nvl(ty.att3(+), dd.att3) = dd.att3

and nvl(ty.att4(+), dd.att4) = dd.att4

--

and bt.att1 = dd.att1 -- precise big join

and bt.att2 = dd.att2

and bt.att3 = dd.att3

and bt.att4 = dd.att4

;

But how many distinct combinations are there in the big table ? Create a result set of

the distinct set, do the match with that, then join with an exact match to the big table.

JDDI

Page 20 of 40

Jonathan Lewis

© 2015 - 2106

Cartesian Puzzle (c)

| Id | Operation | Name | Rows| Time |

| 0 | SELECT STATEMENT | | 520K| 00:00:30 |

| 1 | TEMP TABLE TRANSFORMATION | | | |

| 2 | LOAD AS SELECT | SYS_TEMP_0FD9D662C | | |

| 3 | HASH UNIQUE | | 400 | 00:00:30 |

| 4 | TABLE ACCESS FULL | BIG_TABLE | 500K| 00:00:01 |

|* 5 | HASH JOIN | | 520K| 00:00:01 |

| 6 | NESTED LOOPS OUTER | | 500 | 00:00:01 |

| 7 | VIEW | | 400 | 00:00:01 |

| 8 | TABLE ACCESS FULL | SYS_TEMP_0FD9D662C | 400 | 00:00:01 |

|* 9 | TABLE ACCESS FULL | TYPES | 1 | 00:00:01 |

| 10 | TABLE ACCESS FULL | BIG_TABLE | 500K| 00:00:01 |

http://jonathanlewis.wordpress.com/2015/04/15/cartesian-join/

Execution time dropped from about 2 hours (almost pure CPU time) to less than 30

seconds.

JDDI

Page 21 of 40

Jonathan Lewis

© 2015 - 2106

Intermediates (a)

OTN: "This statement takes 7 hours to run , how do I reduce the time ?"

SELECT 'ISRP-734', to_date('&DateTo', 'YYYY-MM-DD'),

SNE.ID AS HLR

, SNR.FROM_NUMBER||' - '||SNR.TO_NUMBER AS NUMBER_RANGE

, COUNT(M.MSISDN) AS AVAILABLE_MSISDNS -- 37,650 row result

FROM

SA_NUMBER_RANGES SNR -- 10,000 rows

, SA_SERVICE_SYSTEMS SSS -- 1,643 rows

, SA_NETWORK_ELEMENTS SNE -- 200 rows

, SA_MSISDNS M -- 72M rows

WHERE

SSS.SEQ = SNR.SRVSYS_SEQ

AND SSS.SYSTYP_ID = 'OMC HLR'

AND SNE.SEQ = SSS.NE_SEQ

AND SNR.ID_TYPE = 'M'

AND M.MSISDN >= SNR.FROM_NUMBER

AND M.MSISDN <= SNR.TO_NUMBER

AND M.STATE = 'AVL'

GROUP BY

SNE.ID,

SNR.FROM_NUMBER||' - '||SNR.TO_NUMBER

;

http://community.oracle.com/message/12993635

http://jonathanlewis.wordpress.com/2015/04/10/counting-2/

JDDI

Page 22 of 40

Jonathan Lewis

© 2015 - 2106

Intermediates (b)

| Id | Operation | Name | Rows | Bytes |TempSpc| Cost (%CPU)|

| 0 | SELECT STATEMENT | | 53M| 3108M| | 26M (2)|

| 1 | HASH GROUP BY | | 53M| 3108M| 164G| 26M (2)|

| 2 | MERGE JOIN OUTER | | 2438M| 138G| | 195K (15)|

| 3 | SORT JOIN | | 1066 | 51168 | | 21 (15)|

|* 4 | HASH JOIN | | 1066 | 51168 | | 20 (10)|

|* 5 | HASH JOIN | | 328 | 8528 | | 10 (20)|

| 6 | TABLE ACCESS FULL | SA_NETWORK_ELEMENTS | 146 | 1460 | | 2 (0)|

|* 7 | VIEW | index$_join$_002 | 328 | 5248 | | 7 (15)|

|* 8 | HASH JOIN | | | | | |

|* 9 | HASH JOIN | | | | | |

|*10 | INDEX RANGE SCAN | SRVSYS_SYSTYP_FK_I | 328 | 5248 | | 2 (0)|

|*11 | INDEX FAST FULL SCAN| E_NE_FK_I | 328 | 5248 | | 1 (0)|

| 12 | INDEX FAST FULL SCAN | SRVSYS_PK | 328 | 5248 | | 1 (0)|

|*13 | TABLE ACCESS FULL | SA_NUMBER_RANGES | 2219 | 48818 | | 10 (0)|

|*14 | FILTER | | | | | |

|*15 | SORT JOIN | | 13M| 167M| 622M| 169K (2)|

|*16 | TABLE ACCESS FULL | SA_MSISDNS | 13M| 167M| | 104K (2)|

The plan showed a merge join outer between the tables sa_number_ranges and

sa_msisdns which explodes the data massively before the group by contracts it

JDDI

Page 23 of 40

Jonathan Lewis

© 2015 - 2106

The Brontosaurus Query

Ranges

Ranges with counts

What do we do about this bit ?

JDDI

Page 24 of 40

Jonathan Lewis

© 2015 - 2106

Intermediates (c)

insert /*+ append */ into gtt_msisdns

select

msisdn,

row_number() over(order by msisdn) counter

from

sa_msisdns

where

m.state = 'AVL'

;

There is no way around this join explosion if we use the tables as they are (even

if we "hide" the join inside a pl/sql function) until 12c and pattern recognition

Design an extract of sa_msisdns to run as part of this report mechanism.

Give each msisdn a row number (based on sorting the msisdns)

Create a unique index on (msisdn, {ordercolumn})

Costs: one big sort + write to table (less than two minutes for 40M msisdns)

Of course the drawback here is that we don't have a read-consistent result. But is a

result that's out of date by 7 hours better than one that's inconsistent by 2 minutes

JDDI

Page 25 of 40

Jonathan Lewis

© 2015 - 2106

Intermediates (d)

Drive the query from sa_number_ranges, joined twice to the extract.

select

rng.from_number, rng.to_number,

from1.msisdn, from1.counter,

to1.msisdn, to1.counter,

1 + to1.counter - from1.counter range_count

from

sa_number_ranges rng,

gtt_msisdns from1,

gtt_msisdns to1

where

from1.msisdn = (

select min(gf.msisdn) from gtt_msisdns gf

where gf.msisdn >= rng.from_number

)

and to1.msisdn = (

select max(gt.msisdn) from gtt_msisdns gt

where gt.msisdn <= rng.to_number

)

;

It would be nice if there was a way of adding an index (optionally unique) to a "with

subquery" clause, then we would effectively have our read-consistent GTT.

JDDI

Page 26 of 40

Jonathan Lewis

© 2015 - 2106

Intermediates (e)

On a test data set (40M msisdns, 10K number ranges) this query averaged

7 buffer gets per range to "count" the number of MSISDNs in that range

Run time: ca. 0.2 seconds

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | NESTED LOOPS | |

| 2 | NESTED LOOPS | |

| 3 | TABLE ACCESS FULL | SA_NUMBER_RANGES |

|* 4 | INDEX RANGE SCAN | GM_I1 |

| 5 | SORT AGGREGATE | |

| 6 | FIRST ROW | |

|* 7 | INDEX RANGE SCAN (MIN/MAX)| GM_I1 |

|* 8 | INDEX RANGE SCAN | GM_I1 |

| 9 | SORT AGGREGATE | |

| 10 | FIRST ROW | |

|* 11 | INDEX RANGE SCAN (MIN/MAX) | GM_I1 |

JDDI

Page 27 of 40

Jonathan Lewis

© 2015 - 2106

Intermediates (f)

Stew Ashton solutions

New technology (12c) - match_recognize()

Simple case - assume the ranges don't overlap.

select * from (

select from_number, to_number from number_ranges

union all

select msisdn, null from msisdns

)

match_recognize(

order by from_number, to_number -- need an ordering

measures a.from_number from_number, -- the output columns

a.to_number to_number,

count(b.*) range_count

pattern(a b*) -- define "patterns"

define a as to_number is not null, -- how to recognize a type

b as from_number <= a.to_number

);

See also: http://stewashton.wordpress.com/2015/12/12/summarize-data-by-range/ for

a solution with overlapping date ranges. Read-consistent, with runtime < 2 minutes !

order by from_number, to_number -- need an ordering

measures a.from_number from_number, -- the output columns

a.to_number to_number,

count(b.*) range_count

pattern(a b*) -- define "patterns"

define a as to_number is not null, -- how to recognize a type

b as from_number <= a.to_number

JDDI

Page 28 of 40

Jonathan Lewis

© 2015 - 2106

Intermediates (g)

insert into number_ranges values (3, 6);

insert into number_ranges values (8, 13);

insert into msisdns

select 2 * rownum - 1

from dual connect by rownum <= 10;

select * from (

select from_number, to_number from number_ranges

union all

select msisdn, null from msisdns

)

order by from_number, to_number

;

FROM_NUMBER TO_NUMBER

1

3 6

3

5

7

8 13

9

11

13

15

17

19

FROM_NUMBER TO_NUMBER RANGE_COUNT

3 6 2

8 13 3

With a small sample we can construct the intermediate result to see how Oracle is

walking the data to find the pattern.

FROM_NUMBER TO_NUMBER

1

3 6

3

5

7

8 13

9

11

13

JDDI

Page 29 of 40

Jonathan Lewis

© 2015 - 2106

Intermediates (g)

| Id | Operation | Name | Rows |

| 0 | SELECT STATEMENT | | |

| 1 | VIEW | | 1001K|

| 2 | MATCH RECOGNIZE SORT DETERMINISTIC FINITE AUTO| | 1001K|

| 3 | VIEW | | 1001K|

| 4 | UNION-ALL | | |

| 5 | TABLE ACCESS FULL | NUMBER_RANGES | 1000 |

| 6 | TABLE ACCESS FULL | MSISDNS | 1000K|

Primary cost: one big sort

10032 trace
---- Sort Statistics ------------------------------

Input records 1001000

Output records 1001000

Total number of comparisons performed 8157115

Comparisons performed by in-memory sort 8157115

Total amount of memory used 25400320

Uses version 2 sort

---- End of Sort Statistics -----------------------

See also: http://www.slideshare.net/stewashton/row-patternmatching12ctech14/ for a

presentation on match_recognize(). "Deterministic finite auto" is the ideal.

JDDI

Page 30 of 40

Jonathan Lewis

© 2015 - 2106

Subquery Abuse (a)

select count(id) cnt,

case

when exists(

select 'x' from geo_apps apps

where apps.userid = appo.id and apps.PO_ATTRIBUTE1='Y'

) then 'One'

when exists(

select 'x' from geo_apps apps

where apps.userid = appo.id and apps.PO_ATTRIBUTE2='Y'

) then 'Two'

... Up to PO_ATTRIBUTE20

end

from

geo_appo appo -- 15 Million rows.

group by

case

when exists(

select 'x' from geo_apps apps

where apps.userid = appo.id and apps.PO_ATTRIBUTE1='Y'

) then 'One' …

Having learned that scalar subqueries in the select list were possible this user went a

little wild using them, accessing the same table the same way up to 40 times per row.

JDDI

Page 31 of 40

Jonathan Lewis

© 2015 - 2106

Subquery Abuse (b)

Requirement:
Report

the number of rows where PO_ATTRIBUTE1 is the first one set to 'Y'

the number of rows where PO_ATTRIBUTE2 is the first one set to 'Y'

the number of rows where PO_ATTRIBUTE3 is the first one set to 'Y'

...

the number of rows where PO_ATTRIBUTE20 is the first one set to 'Y'

the number of rows where no PO_ATTRIBUTEn is set

Workload
Minimum: 2 * 15M executions of a (3 block) subquery

Worst case: 2 * 300M executions of a (3 block) subquery

Correct Approach
It's not necessarily a good idea to use scalar subqueries in the select list.

Do a join

The strategy can be good - especially if it makes great use of scalar subquery caching

e.g: http://savvinov.com/2016/04/25/unstable-query-performance-a-case-study/.

JDDI

Page 32 of 40

Jonathan Lewis

© 2015 - 2106

Subquery Abuse (c)

select count(*) cnt, first_attribute

From (

select

case

when apps.PO_ATTRIBUTE1='Y' then 'One'

when apps.PO_ATTRIBUTE2='Y' then 'Two'

...

when apps.PO_ATTRIBUTE20='Y' then 'Twenty'

else 'Null'

end as first_attribute

from

geo_appo appo, geo_apps apps

where

apps.userid(+) = appo.id

)

group by

first_attribute

order by

count(*) desc

;

In this case using a join to find the single relevant row with a case statement based on

the values in that row would probably be efficient enough.

JDDI

Page 33 of 40

Jonathan Lewis

© 2015 - 2106

Subquery Elimination (a)

select

a.hotel_code

from lf_hotel_temp a -- 270,000 rows

where

a.service_id = :p_service_id -- one of 3 values

and (

not exists (

select *

from lf_ts_roomtype_properties b

where b.hotel_code = a.hotel_code

)

or not exists (

select *

from lf_gta_roomtype_properties b

where b.hotel_code = a.hotel_code

)

or not exists (

select *

from lf_hb_roomtype_properties b

where b.hotel_code = a.hotel_code

)

)

A first step - which may reduce confusion or introduce insight is to think about re-

arranging the predicates using logical equivalence.

JDDI

Page 34 of 40

Jonathan Lewis

© 2015 - 2106

Logical Equivalence

not A or not B == not (A and B)

not A or not B or not C == not (A and B and C)

A

Not A

B

Not B

A
∩

B

JDDI

Page 35 of 40

Jonathan Lewis

© 2015 - 2106

Subquery Elimination (b)

select

a.hotel_code

from lf_hotel_temp a -- 270,000 rows

where

a.service_id = :p_service_id -- one of 3 values

and not (

exists (

select *

from lf_ts_roomtype_properties b

where b.hotel_code = a.hotel_code

)

and exists (

select *

from lf_gta_roomtype_properties b

where b.hotel_code = a.hotel_code

)

and exists (

select *

from lf_hb_roomtype_properties b

where b.hotel_code = a.hotel_code

)

)

The original query is aiming to "find hotels which do not have all their related data".

Start (next slide) with "find hotels where data exists in all three related tables".

JDDI

Page 36 of 40

Jonathan Lewis

© 2015 - 2106

Subquery Elimination (c)

Subquery approach - large number of small actions (cp. Nested loop join)

Alternative - brute force, just once (cp. Hash join)

select hotel_code

from lf_ts_roomtype_properties

where hotel_code is not null

intersect

select hotel_code

from lf_gta_roomtype_properties

where hotel_code is not null

intersect

select hotel_code

from lf_hb_roomtype_properties

where hotel_code is not null

The optimum strategy depends on the data and the indexing.

Brute force: Step 1 - find all hotels which have data in all three related tables

JDDI

Page 37 of 40

Jonathan Lewis

© 2015 - 2106

Subquery Elimination (d)

select

a.hotel_code

from lf_hotel_temp a -- 270,000 rows

where a.service_id = :p_service_id -- one of 3 values

minus (

select hotel_code

from lf_ts_roomtype_properties

where hotel_code is not null

intersect

select hotel_code

from lf_gta_roomtype_properties

where hotel_code is not null

intersect

select hotel_code

from lf_hb_roomtype_properties

where hotel_code is not null

)

We now subtract the hotels that have all their related data from the list of hotels that

we identify from lf_hotel_temp.

JDDI

Page 38 of 40

Jonathan Lewis

© 2015 - 2106

Subquery Elimination (e)

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | MINUS | |

| 2 | SORT UNIQUE NOSORT | |

|* 3 | INDEX FULL SCAN | LF_HOTEL_TEMP_PK |

| 4 | INTERSECTION | |

| 5 | INTERSECTION | |

| 6 | SORT UNIQUE | |

| 7 | TABLE ACCESS FULL| LF_TS_ROOMTYPE_PROPERTIES |

| 8 | SORT UNIQUE | |

| 9 | TABLE ACCESS FULL| LF_GTA_ROOMTYPE_PROPERTIES |

| 10 | SORT UNIQUE | |

| 11 | TABLE ACCESS FULL | LF_HB_ROOMTYPE_PROPERTIES |

Execution plan for the set-based query

With a suitable index the full scan with sort could be an full scan with "nosort"

JDDI

Page 39 of 40

Jonathan Lewis

© 2015 - 2106

Subquery Elimination (f)

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

|* 1 | HASH JOIN RIGHT ANTI | |

| 2 | VIEW | VW_SQ_1 |

|* 3 | HASH JOIN | |

|* 4 | HASH JOIN | |

| 5 | TABLE ACCESS FULL| LF_GTA_ROOMTYPE_PROPERTIES |

| 6 | TABLE ACCESS FULL| LF_HB_ROOMTYPE_PROPERTIES |

| 7 | TABLE ACCESS FULL | LF_TS_ROOMTYPE_PROPERTIES |

|* 8 | INDEX FULL SCAN | LF_HOTEL_TEMP_PK |

I was impressed to find the optimizer can do the same OR -> AND conversion - and

then converts the three subqueries into a single join subquery and unnests to anti-join

Possible execution plan for the original query - likely in 12c

JDDI

Page 40 of 40

Jonathan Lewis

© 2015 - 2106

Conclusion

• Think technology

• Look for redundant updates

• Use array processing

• Review the requirement

• You can visit a table more than once

• Temporary tables are not evil

• Where's the Brontosaurus

• Rethink subqueries

