
Parallel Execution Plans

Jonathan Lewis

jonathanlewis.wordpress.com

www.jlcomp.demon.co.uk

PX Plans

p. 2 / 34

Jonathan Lewis

© 2011 - 2016

Independent Consultant

33+ years in IT

28+ using Oracle (5.1a on MSDOS 3.3

Strategy, Design, Review,

Briefings, Educational,

Trouble-shooting

Oracle author of the year 2006

Select Editor’s choice 2007

UKOUG Inspiring Presenter 2011

ODTUG 2012 Best Presenter (d/b)

UKOUG Inspiring Presenter 2012

UKOUG Lifetime Award (IPA) 2013

Member of the Oak Table Network

Oracle ACE Director

O1 visa for USA

My History

Many slides have a foot-note. This is just two lines summarizing the highlights of the

slide so that you have a reference when reading the handouts at a later date.

PX Plans

p. 3 / 34

Jonathan Lewis

© 2011 - 2016

Topics

• What are we looking for in a plan

– Order of operation (row source generation)

– Resource usage

– Early elimination of data

• What tools can we use

– dbms_xplan

– v$pq_tqstat

– Extended sql_trace, or equivalent

– v$sql_monitor - if licensed (diagnostic + performance)

PX Plans

p. 4 / 34

Jonathan Lewis

© 2011 - 2016

Terminology

QC: "Query coordinator" - the process controlling the query

(and passing data to the front end)

PX Server: single process used in parallel query

a.k.a Parallel server, Parallel Query Slave, PQ slave, PX slave

Slave Set: A set of PX Servers performing one operation of an

execution plan - commonly a single query will use two sets of PX

servers

DOP: "degree of parallelism" - number of slaves in each slave

set involved in a full parallel execution plan

Table Queue: Logical communication channel between two sets of

slaves, or from a slave set to the QC

a.k.a Virtual table

DFO: "data flow operation" - the set of actions that moves data

through a single table queue

DFO tree: Set of DFOs moving data from its source to the QC

PX Plans

p. 5 / 34

Jonathan Lewis

© 2011 - 2016

Big Problem

SMALL PRINT

PX Plans

p. 6 / 34

Jonathan Lewis

© 2011 - 2016

Sample Data (a)

create table t1 as

select

rownum id,

to_char(rownum) small_vc,

rpad('x',100) padding

from all_objects

where rownum <= 70;

alter table t1 add constraint t1_pk primary key(id);

begin

dbms_stats.gather_table_stats(

user,

't1',

method_opt => 'for all columns size 1'

);

end; Repeat for matching t2 and t3

PX Plans

p. 7 / 34

Jonathan Lewis

© 2011 - 2016

Sample Data (b)

create table t4 as

select

t1.id id1,

t2.id id2,

t3.id id3,

rpad(rownum,10) small_vc,

rpad('x',100) padding

from

t1, t2, t3 -- 343,000 rows

;

begin

dbms_stats.gather_table_stats(

user,

't4',

method_opt => 'for all columns size 1'

);

end;

PX Plans

p. 8 / 34

Jonathan Lewis

© 2011 - 2016

Sample Query (serial)

select

/*+ gather_plan_statistics */

count(t1.small_vc), count(t2.small_vc),

count(t3.small_vc), count(t4.small_vc)

from

t4,

t1,

t2,

t3

where

t1.id = t4.id1

and t2.id = t4.id2

and t3.id = t4.id3

and t1.small_vc in (1,2,3) -- type mismatch !!!

and t2.small_vc in (1,2,3,4)

and t3.small_vc in (1,2,3,4,5)

;

PX Plans

p. 9 / 34

Jonathan Lewis

© 2011 - 2016

Sample Query (serial plan)

select * from table(dbms_xplan.display_cursor(null,null,'allstats last'));

| Id | Operation | Name | Starts | E-Rows | A-Rows |

| 0 | SELECT STATEMENT | | 1 | | 1 |

| 1 | SORT AGGREGATE | | 1 | 1 | 1 |

|* 2 | HASH JOIN | | 1 | 56 | 60 |

|* 3 | TABLE ACCESS FULL | T3 | 1 | 5 | 5 |

|* 4 | HASH JOIN | | 1 | 810 | 840 |

|* 5 | TABLE ACCESS FULL | T2 | 1 | 4 | 4 |

|* 6 | HASH JOIN | | 1 | 14491 | 14700 |

|* 7 | TABLE ACCESS FULL| T1 | 1 | 3 | 3 |

| 8 | TABLE ACCESS FULL| T4 | 1 | 343K| 343K|

We can read the plan by "first child - recursive descent". The order of action is: scan

and hash t3, scan and hash t2, scan and hash t1, scan t4 and probe x3

leading(t4 t1 t2 t3)

use_hash(t1)

use_hash(t2)

use_hash(t3)

leading(t4 t1 t2 t3)

swap_join_inputs(t1)

swap_join_inputs(t2)

swap_join_inputs(t3)

PX Plans

p. 10 / 34

Jonathan Lewis

© 2011 - 2016

Sample Query (serial trace)

alter system flush buffer_cache;

alter session set events '10046 trace name context forever, level 8';

Tablescan table t3
WAIT #: nam='db file sequential read' ela= 2207 f#=7 b#=640 bs=1 obj#=235626

WAIT #: nam='db file scattered read' ela= 570 f#=7 b#=641 bs=2 obj#=235626

As a little check for order of operation, the 10046 trace file (flushing the buffer cache

before doing the test) can show us the physical read waits.

Tablescan table t2
WAIT #: nam='db file sequential read' ela= 458 f#=7 b#=384 bs=1 obj#=235624

WAIT #: nam='db file scattered read' ela= 387 f#=7 b#=385 bs=2 obj#=235624

Tablescan table t1
WAIT #: nam='db file sequential read' ela= 524 f#=7 b#=128 bs=1 obj#=235622

WAIT #: nam='db file scattered read' ela= 477 f#=7 b#=129 bs=2 obj#=235622

Tablescan table t4 (direct)
WAIT #: nam='db file sequential read' ela= 502 f#=7 b#=896 bs= 1 obj#=235628

WAIT #: nam='direct path read' ela= 1658 f= 7 fd=897 bc=127 obj#=235628

WAIT #140096457765816: nam='direct path read'

PX Plans

p. 11 / 34

Jonathan Lewis

© 2011 - 2016

Going Parallel (hash/hash)

select

/*+

gather_plan_statistics

leading(t4 t1 t2 t3)

parallel(t4,2) full(t4) parallel(t1,2) full(t1)

parallel(t2,2) full(t2) parallel(t3,2) full(t3)

--

use_hash(t1) swap_join_inputs(t1)

pq_distribute(t1 hash hash)

--

use_hash(t2) swap_join_inputs(t2)

pq_distribute(t2 hash hash)

--

use_hash(t3) swap_join_inputs(t3)

pq_distribute(t3 hash hash)

*/

count(t1.small_vc), count(t2.small_vc),

count(t3.small_vc), count(t4.small_vc)

from …

parallel/full - force a parallel full tablescan. use_hash/swap_join_inputs - do a hash

join with swap; when tN is the "next" table in the join hash distribute both inputs

PX Plans

p. 12 / 34

Jonathan Lewis

© 2011 - 2016

Going Parallel (broadcast)

select

/*+

gather_plan_statistics

leading(t4 t1 t2 t3)

parallel(t4,2) full(t4) parallel(t1,2) full(t1)

parallel(t2,2) full(t2) parallel(t3,2) full(t3)

--

use_hash(t1) swap_join_inputs(t1)

pq_distribute(t1 none broadcast)

--

use_hash(t2) swap_join_inputs(t2)

pq_distribute(t2 none broadcast)

--

use_hash(t3) swap_join_inputs(t3)

pq_distribute(t3 none broadcast)

*/

count(t1.small_vc), count(t2.small_vc),

count(t3.small_vc), count(t4.small_vc)

from …

parallel/full - force a parallel full tablescan. use_hash/swap_join_inputs - do a hash

join with swap; when tN is the next table in the join broadcast it

PX Plans

p. 13 / 34

Jonathan Lewis

© 2011 - 2016

| Id | Operation | Name | Rows | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | | | | |

| 1 | SORT AGGREGATE | | 1 | | | |

| 2 | PX COORDINATOR | | | | | |

| 3 | PX SEND QC (RANDOM) | :TQ10003 | 1 | Q1,03 | P->S | QC (RAND) |

| 4 | SORT AGGREGATE | | 1 | Q1,03 | PCWP | |

| 5 | HASH JOIN | | 56 | Q1,03 | PCWP | |

| 6 | PX RECEIVE | | 5 | Q1,03 | PCWP | |

| 7 | PX SEND BROADCAST | :TQ10000 | 5 | Q1,00 | P->P | BROADCAST |

| 8 | PX BLOCK ITERATOR | | 5 | Q1,00 | PCWC | |

| 9 | TABLE ACCESS FULL | T3 | 5 | Q1,00 | PCWP | |

| 10 | HASH JOIN | | 810 | Q1,03 | PCWP | |

| 11 | PX RECEIVE | | 4 | Q1,03 | PCWP | |

| 12 | PX SEND BROADCAST | :TQ10001 | 4 | Q1,01 | P->P | BROADCAST |

| 13 | PX BLOCK ITERATOR | | 4 | Q1,01 | PCWC | |

| 14 | TABLE ACCESS FULL | T2 | 4 | Q1,01 | PCWP | |

| 15 | HASH JOIN | | 14491 | Q1,03 | PCWP | |

| 16 | PX RECEIVE | | 3 | Q1,03 | PCWP | |

| 17 | PX SEND BROADCAST | :TQ10002 | 3 | Q1,02 | P->P | BROADCAST |

| 18 | PX BLOCK ITERATOR | | 3 | Q1,02 | PCWC | |

| 19 | TABLE ACCESS FULL| T1 | 3 | Q1,02 | PCWP | |

| 20 | PX BLOCK ITERATOR | | 343K| Q1,03 | PCWC | |

| 21 | TABLE ACCESS FULL | T4 | 343K| Q1,03 | PCWP | |

| 5 | HASH JOIN | | 56 | Q1,03 | PCWP | |

| 9 | TABLE ACCESS FULL | T3 | 5 | Q1,00 | PCWP | |

| 10 | HASH JOIN | | 810 | Q1,03 | PCWP | |

| 14 | TABLE ACCESS FULL | T2 | 4 | Q1,01 | PCWP | |

| 15 | HASH JOIN | | 14491 | Q1,03 | PCWP | |

| 19 | TABLE ACCESS FULL| T1 | 3 | Q1,02 | PCWP | |

| 21 | TABLE ACCESS FULL | T4 | 343K| Q1,03 | PCWP | |

| Id | Operation | Name | Rows | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | | | | |

| 1 | SORT AGGREGATE | | 1 | | | |

| 2 | PX COORDINATOR | | | | | |

| 3 | PX SEND QC (RANDOM) | :TQ10003 | 1 | Q1,03 | P->S | QC (RAND) |

| 4 | SORT AGGREGATE | | 1 | Q1,03 | PCWP | |

| 5 | HASH JOIN | | 56 | Q1,03 | PCWP | |

| 6 | PX RECEIVE | | 5 | Q1,03 | PCWP | |

| 7 | PX SEND BROADCAST | :TQ10000 | 5 | Q1,00 | P->P | BROADCAST |

| 8 | PX BLOCK ITERATOR | | 5 | Q1,00 | PCWC | |

| 9 | TABLE ACCESS FULL | T3 | 5 | Q1,00 | PCWP | |

| 10 | HASH JOIN | | 810 | Q1,03 | PCWP | |

| 11 | PX RECEIVE | | 4 | Q1,03 | PCWP | |

| 12 | PX SEND BROADCAST | :TQ10001 | 4 | Q1,01 | P->P | BROADCAST |

| 13 | PX BLOCK ITERATOR | | 4 | Q1,01 | PCWC | |

| 14 | TABLE ACCESS FULL | T2 | 4 | Q1,01 | PCWP | |

| 15 | HASH JOIN | | 14491 | Q1,03 | PCWP | |

| 16 | PX RECEIVE | | 3 | Q1,03 | PCWP | |

| 17 | PX SEND BROADCAST | :TQ10002 | 3 | Q1,02 | P->P | BROADCAST |

| 18 | PX BLOCK ITERATOR | | 3 | Q1,02 | PCWC | |

| 19 | TABLE ACCESS FULL| T1 | 3 | Q1,02 | PCWP | |

| 20 | PX BLOCK ITERATOR | | 343K| Q1,03 | PCWC | |

| 21 | TABLE ACCESS FULL | T4 | 343K| Q1,03 | PCWP | |

Execution plan (broadcast)

We now have 22 lines instead of 9 but, between all the send/receive operations we

can still see the shape of the four table hash join with the original join order.

PX Plans

p. 14 / 34

Jonathan Lewis

© 2011 - 2016

Parallel Images

Oracle® Database VLDB and Partitioning Guide Ch. 8

Conveniently this simple example shows just two send/receive pairs: from slave set 1

to slave set 2, then from slave set to the query coordinator. Real-life is more complex

PX Plans

p. 15 / 34

Jonathan Lewis

© 2011 - 2016

Parallel Execution - visual

Parallel to

Serial

Co-ordinator

Slave P004 Slave P005Slave P003

Slave P001 Slave P002Slave P000

Slave P004 Slave P005Slave P003

Parallel to

parallel

Parallel to

parallel

Virtual Tables

(TQ) in SGA

Complex queries may need many layers of parallel execution - but Oracle limits a

query to two sets of parallel execution slaves, and this has interesting consequences

PX Plans

p. 16 / 34

Jonathan Lewis

© 2011 - 2016

| Id | Operation | Name | Rows | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | | | | |

| 1 | SORT AGGREGATE | | 1 | | | |

| 2 | PX COORDINATOR | | | | | |

| 3 | PX SEND QC (RANDOM) | :TQ10003 | 1 | Q1,03 | P->S | QC (RAND) |

| 4 | SORT AGGREGATE | | 1 | Q1,03 | PCWP | |

| 5 | HASH JOIN | | 56 | Q1,03 | PCWP | |

| 6 | PX RECEIVE | | 5 | Q1,03 | PCWP | |

| 7 | PX SEND BROADCAST | :TQ10000 | 5 | Q1,00 | P->P | BROADCAST |

| 8 | PX BLOCK ITERATOR | | 5 | Q1,00 | PCWC | |

| 9 | TABLE ACCESS FULL | T3 | 5 | Q1,00 | PCWP | |

| 10 | HASH JOIN | | 810 | Q1,03 | PCWP | |

| 11 | PX RECEIVE | | 4 | Q1,03 | PCWP | |

| 12 | PX SEND BROADCAST | :TQ10001 | 4 | Q1,01 | P->P | BROADCAST |

| 13 | PX BLOCK ITERATOR | | 4 | Q1,01 | PCWC | |

| 14 | TABLE ACCESS FULL | T2 | 4 | Q1,01 | PCWP | |

| 15 | HASH JOIN | | 14491 | Q1,03 | PCWP | |

| 16 | PX RECEIVE | | 3 | Q1,03 | PCWP | |

| 17 | PX SEND BROADCAST | :TQ10002 | 3 | Q1,02 | P->P | BROADCAST |

| 18 | PX BLOCK ITERATOR | | 3 | Q1,02 | PCWC | |

| 19 | TABLE ACCESS FULL| T1 | 3 | Q1,02 | PCWP | |

| 20 | PX BLOCK ITERATOR | | 343K| Q1,03 | PCWC | |

| 21 | TABLE ACCESS FULL | T4 | 343K| Q1,03 | PCWP | |

| 7 | PX SEND BROADCAST | :TQ10000 | 5 | Q1,00 | P->P | BROADCAST |

| 8 | PX BLOCK ITERATOR | | 5 | Q1,00 | PCWC | |

| 9 | TABLE ACCESS FULL | T3 | 5 | Q1,00 | PCWP | |

| 12 | PX SEND BROADCAST | :TQ10001 | 4 | Q1,01 | P->P | BROADCAST |

| 13 | PX BLOCK ITERATOR | | 4 | Q1,01 | PCWC | |

| 14 | TABLE ACCESS FULL | T2 | 4 | Q1,01 | PCWP | |

| 17 | PX SEND BROADCAST | :TQ10002 | 3 | Q1,02 | P->P | BROADCAST |

| 18 | PX BLOCK ITERATOR | | 3 | Q1,02 | PCWC | |

| 19 | TABLE ACCESS FULL| T1 | 3 | Q1,02 | PCWP | |

Execution plan (broadcast)

For parallel queries we have to follow the "virtual tables", known as "table queues".

The order of operation follows the sequence of generating TQs (Name column.)

PX Plans

p. 17 / 34

Jonathan Lewis

© 2011 - 2016

| Id | Operation | Name | Rows | TQ |IN-OUT| PQ Distrib |

| 6 | PX RECEIVE | | 5 | Q1,03 | PCWP | |

| 11 | PX RECEIVE | | 4 | Q1,03 | PCWP | |

| 16 | PX RECEIVE | | 3 | Q1,03 | PCWP | |

Execution plan (broadcast)

| 7 | PX SEND BROADCAST | :TQ10000 | 5 | Q1,00 | P->P | BROADCAST |

| 8 | PX BLOCK ITERATOR | | 5 | Q1,00 | PCWC | |

| 9 | TABLE ACCESS FULL | T3 | 5 | Q1,00 | PCWP | |

| 12 | PX SEND BROADCAST | :TQ10001 | 4 | Q1,01 | P->P | BROADCAST |

| 13 | PX BLOCK ITERATOR | | 4 | Q1,01 | PCWC | |

| 14 | TABLE ACCESS FULL | T2 | 4 | Q1,01 | PCWP | |

| 17 | PX SEND BROADCAST | :TQ10002 | 3 | Q1,02 | P->P | BROADCAST |

| 18 | PX BLOCK ITERATOR | | 3 | Q1,02 | PCWC | |

| 19 | TABLE ACCESS FULL| T1 | 3 | Q1,02 | PCWP | |

In this case the order of operation matches the serial plan. All three tables are inputs

to the same (TQ10003) virtual table - so a single slave set must be receiving them.

PX Plans

p. 18 / 34

Jonathan Lewis

© 2011 - 2016

Execution plan (broadcast)

| Id | Operation | Name | Rows | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | | | | |

| 1 | SORT AGGREGATE | | 1 | | | |

| 2 | PX COORDINATOR | | | | | |

| 3 | PX SEND QC (RANDOM) | :TQ10003 | 1 | Q1,03 | P->S | QC (RAND) |

| 4 | SORT AGGREGATE | | 1 | Q1,03 | PCWP | |

| 5 | HASH JOIN | | 56 | Q1,03 | PCWP | |

| 6 | PX RECEIVE | | 5 | Q1,03 | PCWP | |

| 10 | HASH JOIN | | 810 | Q1,03 | PCWP | |

| 11 | PX RECEIVE | | 4 | Q1,03 | PCWP | |

| 15 | HASH JOIN | | 14491 | Q1,03 | PCWP | |

| 16 | PX RECEIVE | | 3 | Q1,03 | PCWP | |

| 20 | PX BLOCK ITERATOR | | 343K| Q1,03 | PCWC | |

| 21 | TABLE ACCESS FULL | T4 | 343K| Q1,03 | PCWP | |

Think of the name column as the virtual table being used as a pipeline, then the TQ

column tells you how a set of slaves finds data for that virtual table.

PX Plans

p. 19 / 34

Jonathan Lewis

© 2011 - 2016

PQ TQ stats (v$pq_tqstat)

select

dfo_number,

tq_id,

server_type, -- producer/consumer/ranger

instance, -- for RAC

process, -- pNNN

num_rows

from

v$pq_tqstat

order by

dfo_number,

tq_id,

server_type desc,

instance,

process

;

TQ10003 in the plan can be aligned with dfo_number = 1, tq_id = 3 (We will ignore

the significance of DFO's (Data Flow Operation trees) at present.

PX Plans

p. 20 / 34

Jonathan Lewis

© 2011 - 2016

PQ Stats (broadcast)

DFO_NUMBER TQ_ID SERVER_TYPE INSTANCE PROCESS NUM_ROWS

1 0 Producer (send) 1 P002 10

1 P003 0 t3 scan

Consumer (receive) 1 P000 5

1 P001 5 t3 hash

Running parallel 2: we see three consecutive jobs as p002 & p003 broadcast N x 2

rows to p000 & p001; then p000 & p001 produce the result of all three joins.

group by and order by result in rows where the QC operates as server_type = Ranger

1 Producer 1 P002 8

1 P003 0 t2 scan

Consumer 1 P000 4

1 P001 4 t2 hash

2 Producer 1 P002 6

1 P003 0 t1 scan

Consumer 1 P000 3

1 P001 3 t1 hash

3 Producer 1 P000 1 t4 scan,

1 P001 1 probe & ct

Consumer 1 QC 2

PX Plans

p. 21 / 34

Jonathan Lewis

© 2011 - 2016

Trace files (broadcast)

In the previous slide slaves p000 and p001 scanned table t4 - so what do their trace files say

about the work done - the estimate was to generate 343,000 rows before joining

| 20 | PX BLOCK ITERATOR | | 343K| Q1,03 | PCWC | |

| 21 | TABLE ACCESS FULL | T4 | 343K| Q1,03 | PCWP | |

P000

STAT #N id=20 cnt=40 pid=15 pos=2 obj=0 op='PX BLOCK ITERATOR(card=343000)'

STAT #N id=21 cnt=40 pid=20 pos=1 obj=235635 op='TABLE ACCESS FULL T4(card=343000)'

This shows a total of 60 rows returned from the table scan of t4 before the first join.

This is the effect of Bloom filtering.

On the Exadata database machine the Bloom filters can be sent to the storage server

The storage server can use storage indexes and smart scans to minimise disk and network load

A Bloom filter changes a join into a predicate. It eliminates (most of the) data that

you don't want, allows all the data you do want - but may return some unwanted data

P001

STAT #N id=20 cnt=20 pid=15 pos=2 obj=0 op='PX BLOCK ITERATOR(card=343000)'

STAT #N id=21 cnt=20 pid=20 pos=1 obj=235635 op='TABLE ACCESS FULL T4(card=343000)'

PX Plans

p. 22 / 34

Jonathan Lewis

© 2011 - 2016

Parallel display_cursor()
|Id |Operation | Name |E-Rows | TQ |IN-OUT| PQ Dist |A-Rows|

| 0|SELECT STATEMENT | | | | | | 1|

| 1| SORT AGGREGATE | | 1 | | | | 1|

| 2| PX COORDINATOR | | | | | | 2|

| 3| PX SEND QC (RANDOM) | :TQ10003| 1 | Q1,03 | P->S | QC (RAND)| 0|

| 4| SORT AGGREGATE | | 1 | Q1,03 | PCWP | | 2|

|* 5| HASH JOIN | | 56 | Q1,03 | PCWP | | 60|

| 6| PX RECEIVE | | 5 | Q1,03 | PCWP | | 10|

| 7| PX SEND BROADCAST | :TQ10000| 5 | Q1,00 | P->P | BROADCAST| 0|

| 8| PX BLOCK ITERATOR | | 5 | Q1,00 | PCWC | | 5|

|* 9| TABLE ACCESS FULL | T3 | 5 | Q1,00 | PCWP | | 5|

|*10| HASH JOIN | | 810 | Q1,03 | PCWP | | 60|

| 11| PX RECEIVE | | 4 | Q1,03 | PCWP | | 8|

| 12| PX SEND BROADCAST | :TQ10001| 4 | Q1,01 | P->P | BROADCAST| 0|

| 13| PX BLOCK ITERATOR | | 4 | Q1,01 | PCWC | | 4|

|*14| TABLE ACCESS FULL | T2 | 4 | Q1,01 | PCWP | | 4|

|*15| HASH JOIN | | 14491 | Q1,03 | PCWP | | 60|

| 16| PX RECEIVE | | 3 | Q1,03 | PCWP | | 6|

| 17| PX SEND BROADCAST | :TQ10002| 3 | Q1,02 | P->P | BROADCAST| 0|

| 18| PX BLOCK ITERATOR | | 3 | Q1,02 | PCWC | | 3|

|*19| TABLE ACCESS FULL| T1 | 3 | Q1,02 | PCWP | | 3|

| 20| PX BLOCK ITERATOR | | 343K| Q1,03 | PCWC | | 60|

|*21| TABLE ACCESS FULL | T4 | 343K| Q1,03 | PCWP | | 60|

After running the query just once I've used the format option 'allstats parallel' without

"last" to get this output (and then I've deleted several columns).

PX Plans

p. 23 / 34

Jonathan Lewis

© 2011 - 2016

Execution plan (broadcast)

Predicate Information (identified by operation id):

5 - access("T3"."ID"="T4"."ID3")

9 - access(:Z>=:Z AND :Z<=:Z) -- check rowid ranges

filter((TO_NUMBER("T3"."SMALL_VC")=1 OR TO_NUMBER("T3"."SMALL_VC")=2

OR TO_NUMBER("T3"."SMALL_VC")=3 OR TO_NUMBER("T3"."SMALL_VC")=4

OR TO_NUMBER("T3"."SMALL_VC")=5))

10 - access("T2"."ID"="T4"."ID2")

14 - access(:Z>=:Z AND :Z<=:Z)

filter((TO_NUMBER("T2"."SMALL_VC")=1 OR TO_NUMBER("T2"."SMALL_VC")=2

OR TO_NUMBER("T2"."SMALL_VC")=3 OR TO_NUMBER("T2"."SMALL_VC")=4))

15 - access("T1"."ID"="T4"."ID1")

19 - access(:Z>=:Z AND :Z<=:Z)

filter((TO_NUMBER("T1"."SMALL_VC")=1 OR TO_NUMBER("T1"."SMALL_VC")=2 OR

TO_NUMBER("T1"."SMALL_VC")=3))

21 - access(:Z>=:Z AND :Z<=:Z)

filter(SYS_OP_BLOOM_FILTER_LIST(

SYS_OP_BLOOM_FILTER(:BF0000,"T4"."ID1"),

SYS_OP_BLOOM_FILTER(:BF0000,"T4"."ID2"),

SYS_OP_BLOOM_FILTER(:BF0000,"T4"."ID3")

)) -- Blooom filters from all three dimensions used during tablescan

In 11g the predicate section shows that three Bloom filters were used during the t4

tablescan. They identify which column is filtered on, but the BF numbering is odd.

9 - access(:Z>=:Z AND :Z<=:Z) -- check rowid ranges

14 - access(:Z>=:Z AND :Z<=:Z)

19 - access(:Z>=:Z AND :Z<=:Z)

21 - access(:Z>=:Z AND :Z<=:Z)

PX Plans

p. 24 / 34

Jonathan Lewis

© 2011 - 2016

Graphic (broadcast)

P000/P001

P002/P003

scan t2

t2

scan t3

t3

scan t1

t1
Build hash

create B3

Build hash

create B2

Build hash

create B1

QC

scan and filter t4

probe t1, t2, t3

aggregate

Time

PX Plans

p. 25 / 34

Jonathan Lewis

© 2011 - 2016

12c Broadcast plan

| Id | Operation | Name | Rows | Bytes | Cost | TQ |IN-OUT| PQ Distrib|

| 0 | SELECT STATEMENT | | | | 351 | | | |

| 1 | SORT AGGREGATE | | 1 | 38 | | | | |

| 2 | PX COORDINATOR | | | | | | | |

| 3 | PX SEND QC (RANDOM) | :TQ10000 | 1 | 38 | | Q1,00 | P->S | QC (RAND) |

| 4 | SORT AGGREGATE | | 1 | 38 | | Q1,00 | PCWP | |

|* 5 | HASH JOIN | | 56 | 2128 | 351 | Q1,00 | PCWP | |

| 6 | JOIN FILTER CREATE | :BF0000 | 5 | 30 | 2 | Q1,00 | PCWP | |

|* 7 | TABLE ACCESS FULL | T3 | 5 | 30 | 2 | Q1,00 | PCWP | |

|* 8 | HASH JOIN | | 810 | 25920 | 349 | Q1,00 | PCWP | |

| 9 | JOIN FILTER CREATE | :BF0001 | 4 | 24 | 2 | Q1,00 | PCWP | |

|*10 | TABLE ACCESS FULL | T2 | 4 | 24 | 2 | Q1,00 | PCWP | |

|*11 | HASH JOIN | | 14491 | 367K| 347 | Q1,00 | PCWP | |

| 12 | JOIN FILTER CREATE | :BF0002 | 3 | 18 | 2 | Q1,00 | PCWP | |

|*13 | TABLE ACCESS FULL | T1 | 3 | 18 | 2 | Q1,00 | PCWP | |

| 14 | JOIN FILTER USE | :BF0000 | 343K| 6699K| 345 | Q1,00 | PCWP | |

| 15 | JOIN FILTER USE | :BF0001 | 343K| 6699K| 345 | Q1,00 | PCWP | |

| 16 | JOIN FILTER USE | :BF0002 | 343K| 6699K| 345 | Q1,00 | PCWP | |

| 17 | PX BLOCK ITERATOR | | 343K| 6699K| 345 | Q1,00 | PCWC | |

|*18 | TABLE ACCESS FULL| T4 | 343K| 6699K| 345 | Q1,00 | PCWP | |

There are many differences in the 12c, which changes dramatically, caching scans,

avoiding many table queues, and showing us where the filters are created and used.

PX Plans

p. 26 / 34

Jonathan Lewis

© 2011 - 2016

| Id | Operation | Name | Rows | Time | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | | | | | |

| 1 | SORT AGGREGATE | | 1 | | | | |

| 2 | PX COORDINATOR | | | | | | |

| 3 | PX SEND QC (RANDOM) | :TQ10006 | 1 | | Q1,06 | P->S | QC (RAND) |

| 4 | SORT AGGREGATE | | 1 | | Q1,06 | PCWP | |

|* 5 | HASH JOIN | | 56 | 00:00:29 | Q1,06 | PCWP | |

| 6 | JOIN FILTER CREATE | :BF0000 | 5 | 00:00:01 | Q1,06 | PCWP | |

| 7 | PX RECEIVE | | 5 | 00:00:01 | Q1,06 | PCWP | |

| 8 | PX SEND HASH | :TQ10004 | 5 | 00:00:01 | Q1,04 | P->P | HASH |

| 9 | PX BLOCK ITERATOR | | 5 | 00:00:01 | Q1,04 | PCWC | |

|* 10 | TABLE ACCESS FULL | T3 | 5 | 00:00:01 | Q1,04 | PCWP | |

| 11 | PX RECEIVE | | 810 | 00:00:29 | Q1,06 | PCWP | |

| 12 | PX SEND HASH | :TQ10005 | 810 | 00:00:29 | Q1,05 | P->P | HASH |

| 13 | JOIN FILTER USE | :BF0000 | 810 | 00:00:29 | Q1,05 | PCWP | |

|* 14 | HASH JOIN BUFFERED | | 810 | 00:00:29 | Q1,05 | PCWP | |

| 15 | JOIN FILTER CREATE | :BF0001 | 4 | 00:00:01 | Q1,05 | PCWP | |

| 16 | PX RECEIVE | | 4 | 00:00:01 | Q1,05 | PCWP | |

| 17 | PX SEND HASH | :TQ10002 | 4 | 00:00:01 | Q1,02 | P->P | HASH |

| 18 | PX BLOCK ITERATOR | | 4 | 00:00:01 | Q1,02 | PCWC | |

|* 19 | TABLE ACCESS FULL | T2 | 4 | 00:00:01 | Q1,02 | PCWP | |

| 20 | PX RECEIVE | | 14491 | 00:00:29 | Q1,05 | PCWP | |

| 21 | PX SEND HASH | :TQ10003 | 14491 | 00:00:29 | Q1,03 | P->P | HASH |

| 22 | JOIN FILTER USE | :BF0001 | 14491 | 00:00:29 | Q1,03 | PCWP | |

|* 23 | HASH JOIN BUFFERED | | 14491 | 00:00:29 | Q1,03 | PCWP | |

| 24 | JOIN FILTER CREATE | :BF0002 | 3 | 00:00:01 | Q1,03 | PCWP | |

| 25 | PX RECEIVE | | 3 | 00:00:01 | Q1,03 | PCWP | |

| 26 | PX SEND HASH | :TQ10000 | 3 | 00:00:01 | Q1,00 | P->P | HASH |

| 27 | PX BLOCK ITERATOR | | 3 | 00:00:01 | Q1,00 | PCWC | |

|* 28 | TABLE ACCESS FULL| T1 | 3 | 00:00:01 | Q1,00 | PCWP | |

| 29 | PX RECEIVE | | 343K| 00:00:29 | Q1,03 | PCWP | |

| 30 | PX SEND HASH | :TQ10001 | 343K| 00:00:29 | Q1,01 | P->P | HASH |

| 31 | JOIN FILTER USE | :BF0002 | 343K| 00:00:29 | Q1,01 | PCWP | |

| 32 | PX BLOCK ITERATOR | | 343K| 00:00:29 | Q1,01 | PCWC | |

|* 33 | TABLE ACCESS FULL| T4 | 343K| 00:00:29 | Q1,01 | PCWP | |

| Id | Operation | Name | Rows | Time | TQ |IN-OUT| PQ Distrib |

|* 5 | HASH JOIN | | 56 | 00:00:29 | Q1,06 | PCWP | |

|* 10 | TABLE ACCESS FULL | T3 | 5 | 00:00:01 | Q1,04 | PCWP | |

|* 14 | HASH JOIN BUFFERED | | 810 | 00:00:29 | Q1,05 | PCWP | |

|* 19 | TABLE ACCESS FULL | T2 | 4 | 00:00:01 | Q1,02 | PCWP | |

|* 23 | HASH JOIN BUFFERED | | 14491 | 00:00:29 | Q1,03 | PCWP | |

|* 28 | TABLE ACCESS FULL| T1 | 3 | 00:00:01 | Q1,00 | PCWP | |

|* 33 | TABLE ACCESS FULL| T4 | 343K| 00:00:29 | Q1,01 | PCWP | |

| Id | Operation | Name | Rows | Time | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | | | | | |

| 1 | SORT AGGREGATE | | 1 | | | | |

| 2 | PX COORDINATOR | | | | | | |

| 3 | PX SEND QC (RANDOM) | :TQ10006 | 1 | | Q1,06 | P->S | QC (RAND) |

| 4 | SORT AGGREGATE | | 1 | | Q1,06 | PCWP | |

|* 5 | HASH JOIN | | 56 | 00:00:29 | Q1,06 | PCWP | |

| 6 | JOIN FILTER CREATE | :BF0000 | 5 | 00:00:01 | Q1,06 | PCWP | |

| 7 | PX RECEIVE | | 5 | 00:00:01 | Q1,06 | PCWP | |

| 8 | PX SEND HASH | :TQ10004 | 5 | 00:00:01 | Q1,04 | P->P | HASH |

| 9 | PX BLOCK ITERATOR | | 5 | 00:00:01 | Q1,04 | PCWC | |

|* 10 | TABLE ACCESS FULL | T3 | 5 | 00:00:01 | Q1,04 | PCWP | |

| 11 | PX RECEIVE | | 810 | 00:00:29 | Q1,06 | PCWP | |

| 12 | PX SEND HASH | :TQ10005 | 810 | 00:00:29 | Q1,05 | P->P | HASH |

| 13 | JOIN FILTER USE | :BF0000 | 810 | 00:00:29 | Q1,05 | PCWP | |

|* 14 | HASH JOIN BUFFERED | | 810 | 00:00:29 | Q1,05 | PCWP | |

| 15 | JOIN FILTER CREATE | :BF0001 | 4 | 00:00:01 | Q1,05 | PCWP | |

| 16 | PX RECEIVE | | 4 | 00:00:01 | Q1,05 | PCWP | |

| 17 | PX SEND HASH | :TQ10002 | 4 | 00:00:01 | Q1,02 | P->P | HASH |

| 18 | PX BLOCK ITERATOR | | 4 | 00:00:01 | Q1,02 | PCWC | |

|* 19 | TABLE ACCESS FULL | T2 | 4 | 00:00:01 | Q1,02 | PCWP | |

| 20 | PX RECEIVE | | 14491 | 00:00:29 | Q1,05 | PCWP | |

| 21 | PX SEND HASH | :TQ10003 | 14491 | 00:00:29 | Q1,03 | P->P | HASH |

| 22 | JOIN FILTER USE | :BF0001 | 14491 | 00:00:29 | Q1,03 | PCWP | |

|* 23 | HASH JOIN BUFFERED | | 14491 | 00:00:29 | Q1,03 | PCWP | |

| 24 | JOIN FILTER CREATE | :BF0002 | 3 | 00:00:01 | Q1,03 | PCWP | |

| 25 | PX RECEIVE | | 3 | 00:00:01 | Q1,03 | PCWP | |

| 26 | PX SEND HASH | :TQ10000 | 3 | 00:00:01 | Q1,00 | P->P | HASH |

| 27 | PX BLOCK ITERATOR | | 3 | 00:00:01 | Q1,00 | PCWC | |

|* 28 | TABLE ACCESS FULL| T1 | 3 | 00:00:01 | Q1,00 | PCWP | |

| 29 | PX RECEIVE | | 343K| 00:00:29 | Q1,03 | PCWP | |

| 30 | PX SEND HASH | :TQ10001 | 343K| 00:00:29 | Q1,01 | P->P | HASH |

| 31 | JOIN FILTER USE | :BF0002 | 343K| 00:00:29 | Q1,01 | PCWP | |

| 32 | PX BLOCK ITERATOR | | 343K| 00:00:29 | Q1,01 | PCWC | |

|* 33 | TABLE ACCESS FULL| T4 | 343K| 00:00:29 | Q1,01 | PCWP | |

Execution plan (hash / hash)

We've now gone from 22 lines to 34 lines, but we can still see the shape and order of

the original four table hash join. (Hash Join Buffered is a threat!)

PX Plans

p. 27 / 34

Jonathan Lewis

© 2011 - 2016

| Id | Operation | Name | Rows | Time | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | | | | | |

| 1 | SORT AGGREGATE | | 1 | | | | |

| 2 | PX COORDINATOR | | | | | | |

| 3 | PX SEND QC (RANDOM) | :TQ10006 | 1 | | Q1,06 | P->S | QC (RAND) |

| 4 | SORT AGGREGATE | | 1 | | Q1,06 | PCWP | |

|* 5 | HASH JOIN | | 56 | 00:00:29 | Q1,06 | PCWP | |

| 6 | JOIN FILTER CREATE | :BF0000 | 5 | 00:00:01 | Q1,06 | PCWP | |

| 7 | PX RECEIVE | | 5 | 00:00:01 | Q1,06 | PCWP | |

| 8 | PX SEND HASH | :TQ10004 | 5 | 00:00:01 | Q1,04 | P->P | HASH |

| 9 | PX BLOCK ITERATOR | | 5 | 00:00:01 | Q1,04 | PCWC | |

|* 10 | TABLE ACCESS FULL | T3 | 5 | 00:00:01 | Q1,04 | PCWP | |

| 11 | PX RECEIVE | | 810 | 00:00:29 | Q1,06 | PCWP | |

| 12 | PX SEND HASH | :TQ10005 | 810 | 00:00:29 | Q1,05 | P->P | HASH |

| 13 | JOIN FILTER USE | :BF0000 | 810 | 00:00:29 | Q1,05 | PCWP | |

|* 14 | HASH JOIN BUFFERED | | 810 | 00:00:29 | Q1,05 | PCWP | |

| 15 | JOIN FILTER CREATE | :BF0001 | 4 | 00:00:01 | Q1,05 | PCWP | |

| 16 | PX RECEIVE | | 4 | 00:00:01 | Q1,05 | PCWP | |

| 17 | PX SEND HASH | :TQ10002 | 4 | 00:00:01 | Q1,02 | P->P | HASH |

| 18 | PX BLOCK ITERATOR | | 4 | 00:00:01 | Q1,02 | PCWC | |

|* 19 | TABLE ACCESS FULL | T2 | 4 | 00:00:01 | Q1,02 | PCWP | |

| 20 | PX RECEIVE | | 14491 | 00:00:29 | Q1,05 | PCWP | |

| 21 | PX SEND HASH | :TQ10003 | 14491 | 00:00:29 | Q1,03 | P->P | HASH |

| 22 | JOIN FILTER USE | :BF0001 | 14491 | 00:00:29 | Q1,03 | PCWP | |

|* 23 | HASH JOIN BUFFERED | | 14491 | 00:00:29 | Q1,03 | PCWP | |

| 24 | JOIN FILTER CREATE | :BF0002 | 3 | 00:00:01 | Q1,03 | PCWP | |

| 25 | PX RECEIVE | | 3 | 00:00:01 | Q1,03 | PCWP | |

| 26 | PX SEND HASH | :TQ10000 | 3 | 00:00:01 | Q1,00 | P->P | HASH |

| 27 | PX BLOCK ITERATOR | | 3 | 00:00:01 | Q1,00 | PCWC | |

|* 28 | TABLE ACCESS FULL| T1 | 3 | 00:00:01 | Q1,00 | PCWP | |

| 29 | PX RECEIVE | | 343K| 00:00:29 | Q1,03 | PCWP | |

| 30 | PX SEND HASH | :TQ10001 | 343K| 00:00:29 | Q1,01 | P->P | HASH |

| 31 | JOIN FILTER USE | :BF0002 | 343K| 00:00:29 | Q1,01 | PCWP | |

| 32 | PX BLOCK ITERATOR | | 343K| 00:00:29 | Q1,01 | PCWC | |

|* 33 | TABLE ACCESS FULL| T4 | 343K| 00:00:29 | Q1,01 | PCWP | |

Execution plan (hash / hash)

We now have seven table queues to follow. Notice how they don't follow a simple

consecutive pattern up the plan, though.

PX Plans

p. 28 / 34

Jonathan Lewis

© 2011 - 2016

Execution plan (hash / hash)

| Id | Operation | Name | Rows | Time | TQ |IN-OUT| PQ Distrib |

| 0 | SELECT STATEMENT | | | | | | |

| 1 | SORT AGGREGATE | | 1 | | | | |

| 2 | PX COORDINATOR | | | | | | |

| 3 | PX SEND QC (RANDOM) | :TQ10006 | 1 | | Q1,06 | P->S | QC (RAND) |

| 4 | SORT AGGREGATE | | 1 | | Q1,06 | PCWP | |

|* 5 | HASH JOIN | | 56 | 00:00:29 | Q1,06 | PCWP | |

| 6 | JOIN FILTER CREATE | :BF0000 | 5 | 00:00:01 | Q1,06 | PCWP | |

| 7 | PX RECEIVE | | 5 | 00:00:01 | Q1,06 | PCWP | |

| 8 | PX SEND HASH | :TQ10004 | 5 | 00:00:01 | Q1,04 | P->P | HASH |

| 9 | PX BLOCK ITERATOR | | 5 | 00:00:01 | Q1,04 | PCWC | |

|* 10 | TABLE ACCESS FULL | T3 | 5 | 00:00:01 | Q1,04 | PCWP | |

| 11 | PX RECEIVE | | 810 | 00:00:29 | Q1,06 | PCWP | |

| 12 | PX SEND HASH | :TQ10005 | 810 | 00:00:29 | Q1,05 | P->P | HASH |

| 13 | JOIN FILTER USE | :BF0000 | 810 | 00:00:29 | Q1,05 | PCWP | |

|* 14 | HASH JOIN BUFFERED | | 810 | 00:00:29 | Q1,05 | PCWP | |

| 15 | JOIN FILTER CREATE | :BF0001 | 4 | 00:00:01 | Q1,05 | PCWP | |

| 16 | PX RECEIVE | | 4 | 00:00:01 | Q1,05 | PCWP | |

| 17 | PX SEND HASH | :TQ10002 | 4 | 00:00:01 | Q1,02 | P->P | HASH |

| 18 | PX BLOCK ITERATOR | | 4 | 00:00:01 | Q1,02 | PCWC | |

|* 19 | TABLE ACCESS FULL | T2 | 4 | 00:00:01 | Q1,02 | PCWP | |

| 20 | PX RECEIVE | | 14491 | 00:00:29 | Q1,05 | PCWP | |

| 21 | PX SEND HASH | :TQ10003 | 14491 | 00:00:29 | Q1,03 | P->P | HASH |

| 22 | JOIN FILTER USE | :BF0001 | 14491 | 00:00:29 | Q1,03 | PCWP | |

|* 23 | HASH JOIN BUFFERED | | 14491 | 00:00:29 | Q1,03 | PCWP | |

| 24 | JOIN FILTER CREATE | :BF0002 | 3 | 00:00:01 | Q1,03 | PCWP | |

| 25 | PX RECEIVE | | 3 | 00:00:01 | Q1,03 | PCWP | |

| 26 | PX SEND HASH | :TQ10000 | 3 | 00:00:01 | Q1,00 | P->P | HASH |

| 27 | PX BLOCK ITERATOR | | 3 | 00:00:01 | Q1,00 | PCWC | |

|* 28 | TABLE ACCESS FULL| T1 | 3 | 00:00:01 | Q1,00 | PCWP | |

| 29 | PX RECEIVE | | 343K| 00:00:29 | Q1,03 | PCWP | |

| 30 | PX SEND HASH | :TQ10001 | 343K| 00:00:29 | Q1,01 | P->P | HASH |

| 31 | JOIN FILTER USE | :BF0002 | 343K| 00:00:29 | Q1,01 | PCWP | |

| 32 | PX BLOCK ITERATOR | | 343K| 00:00:29 | Q1,01 | PCWC | |

|* 33 | TABLE ACCESS FULL| T4 | 343K| 00:00:29 | Q1,01 | PCWP | |

The plan includes several pairs of lines showing the creation and use of Bloom filters

(We have to ignore the BF numbers as they don't agree with the order of creation).

We create the filter

after we receive

the build table (T1)

We use it before we

send the probe table

PX Plans

p. 29 / 34

Jonathan Lewis

© 2011 - 2016

Execution plan (hash / hash)

Predicate Information (identified by operation id):

5 - access("T3"."ID"="T4"."ID3")

10 - access(:Z>=:Z AND :Z<=:Z)

filter((TO_NUMBER("T3"."SMALL_VC")=1 OR TO_NUMBER("T3"."SMALL_VC")=2 OR

TO_NUMBER("T3"."SMALL_VC")=3))

14 - access("T2"."ID"="T4"."ID2")

19 - access(:Z>=:Z AND :Z<=:Z)

filter((TO_NUMBER("T2"."SMALL_VC")=1 OR TO_NUMBER("T2"."SMALL_VC")=2 OR

TO_NUMBER("T2"."SMALL_VC")=3))

23 - access("T1"."ID"="T4"."ID1")

28 - access(:Z>=:Z AND :Z<=:Z)

filter((TO_NUMBER("T1"."SMALL_VC")=1 OR TO_NUMBER("T1"."SMALL_VC")=2 OR

TO_NUMBER("T1"."SMALL_VC")=3))

33 - access(:Z>=:Z AND :Z<=:Z)

filter(SYS_OP_BLOOM_FILTER(:BF0000,"T4"."ID1"))

Although the plan says we created and used three Bloom filters the predicate section

only reports using one of them. We need to check execution stats.

PX Plans

p. 30 / 34

Jonathan Lewis

© 2011 - 2016

OEM monitor (11g)

15K

840

60

Compare the actual rows with estimates and you can see the "actual rows" figures

drop by N/70 before each join as each Bloom filter is used.

PX Plans

p. 31 / 34

Jonathan Lewis

© 2011 - 2016

PQ Stats (hash / hash)

DFO_NUMBER TQ_ID SERVER_TYPE INSTANCE PROCESS NUM_ROWS

1 0 Producer 1 P002 3 scan t1

1 P003 0 pass to 0/1 to build

Consumer 1 P000 2

1 P001 1 return filter (b1)

The first two steps of the TQ stats show slave set 2 scanning t1 then scanning t4 with

a Bloom filter - but slave set 1 doesn't join the two rowsources straight away.

1 Producer 1 P002 7297 scan t4 filter (b1)

1 P003 7405 Pass to 0/1

Consumer 1 P000 9801 buffer

1 P001 4901 buffer

2 Producer 1 P000 4 scan t2

1 P001 0 pass to 2/3 to build

Consumer 1 P002 3

1 P003 1 return filter (b2)

PX Plans

p. 32 / 34

Jonathan Lewis

© 2011 - 2016

PQ Stats (hash / hash)

DFO_NUMBER TQ_ID SERVER_TYPE INSTANCE PROCESS NUM_ROWS

3 Producer 1 P000 560 t1/t4 filter (b2)

1 P001 282 Pass to 2/3

Consumer 1 P002 632 buffer

1 P003 210 buffer

After sending t2 to slave set 2, slave set 1 joins t1 and t4 and sends the result to slave

set 2 - but slave set 2 doesn't join these two rowsources straight away.

4 Producer 1 P002 5 scan t3

1 P003 0 pass to 0/1 to build

Consumer 1 P000 4

1 P001 1 return filter (b3)

5 Producer 1 P002 45 t2/(t1/t4) filter (b3)

1 P003 15

Consumer 1 P000 48 Pass to 0/1

1 P001 12

6 Producer 1 P000 1 join t3/(t2/(t1/t4)

1 P001 1 and aggregate results

Consumer 1 QC 2

PX Plans

p. 33 / 34

Jonathan Lewis

© 2011 - 2016

Graphic (hash / hash)

P000/P001

P002/P003

Scan

t2

t2

scan t4

filter B1

t4

14700 rows

scan

t3

t3

scan

t1

t1

return

filter

B1

return

filter

B2

Join t4/t1

filter B2

t4/t1

840 rows

return

filter

B3

join t4/t1/t2

filter B3

t4/t1/t2

60 rows

Buffering - we don't join then buffer, we just buffer the incoming probe data.

Note the recurring groups of 3 - scan X, get filter X, join previous and use filter X.

QC

join

t4/t1/t2/t3

aggregate
TQ 0 TQ 1

TQ 2 TQ 3

TQ 4 TQ 5 TQ 6

PX Plans

p. 34 / 34

Jonathan Lewis

© 2011 - 2016

Observations

• Follow the TQxxyyyy name order - within DFO tree

– "Name" = :TQxxyyy and "TQ" = Qxx,yyyy

• Hash Join Buffered may spill the "large table" to disc

– Use lots of memory and broadcast

• Bloom filters "hide" (in 11g)

– Look at v$pq_tqstat, 10046, OEM Monitor (v$sql_monitor)

• Bloom filter numbering is "wrong"

– (The same is true of DFO trees)

• Keep an eye on v$pq_tqstat for uneven distribution

– But it has many limitations. SQL Monitor is far better if licensed

